当前的位置:首页 > 科技前沿 > 内容
阿尔法狗再进化走向低碳 靠自学3天速成高手

发布时间:2018-01-03来源:南宁新技术创业者中心网站

此前,阿尔法狗击败中国棋手柯洁后便宣布退役,不少人为之惊叹。但该公司于最近公布了阿尔法狗的最强版,靠自己自学,不需要人类数据和人类棋谱,最终在3天内成为一名高手。在与韩国棋手李世石的比赛中,创造出100:0的压倒性战绩。然而,阿尔法狗再进化后开始向“低碳”发展,因为它只用到一台机器和4个TPU。

伦敦当地时间10月18日18:00(北京时间19日01:00),AlphaGo再次登上世界顶级科学杂志——《自然》。一年多前,AlphaGo便是2016年1月28日当期的封面文章,Deepmind公司发表重磅论文,介绍了这个击败欧洲围棋冠军樊麾的人工智能程序。

今年5月,以3:0的比分赢下中国棋手柯洁后,AlphaGo宣布退役,但DeepMind公司并没有停下研究的脚步。伦敦当地时间10月18日,DeepMind团队公布了最强版AlphaGo ,代号AlphaGo Zero。它的独门秘籍,是“自学成才”。而且,是从一张白纸开始,零基础学习,在短短3天内,成为顶级高手。

团队称,AlphaGo Zero的水平已经超过之前所有版本的AlphaGo。在对阵曾赢下韩国棋手李世石那版AlphaGo时,AlphaGo Zero取得了100:0的压倒性战绩。DeepMind团队将关于AlphaGo Zero的相关研究以论文的形式,刊发在了10月18日的《自然》杂志上。

“AlphaGo在两年内达到的成绩令人震惊。现在,AlphaGo Zero是我们最强版本,它提升了很多。Zero提高了计算效率,并且没有使用到任何人类围棋数据,”AlphaGo之父、DeepMind联合创始人兼CEO 戴密斯·哈萨比斯(Demis Hassabis)说,“最终,我们想要利用它的算法突破,去帮助解决各种紧迫的现实世界问题,如蛋白质折叠或设计新材料。如果我们通过AlphaGo,可以在这些问题上取得进展,那么它就有潜力推动人们理解生命,并以积极的方式影响我们的生活。”

AlphaGo此前的版本,结合了数百万人类围棋专家的棋谱,以及强化学习的监督学习进行了自我训练。在战胜人类围棋职业高手之前,它经过了好几个月的训练,依靠的是多台机器和48个TPU(谷歌专为加速深层神经网络运算能力而研发的芯片)。

AlphaGo Zero的能力则在这个基础上有了质的提升。最大的区别是,它不再需要人类数据。也就是说,它一开始就没有接触过人类棋谱。研发团队只是让它自由随意地在棋盘上下棋,然后进行自我博弈。值得一提的是,AlphaGo Zero还非常“低碳”,只用到了一台机器和4个TPU,极大地节省了资源。

经过3天的训练后,这套系统已经可以击败AlphaGo Lee,也就是去年击败韩国顶尖棋手李世石的那套系统,而且比分高达100比0。经过40天训练后,它总计运行了大约2900万次自我对弈,使得AlphaGo Zero得以击败AlphaGo Master(今年早些时候击败世界冠军柯洁的系统),比分为89比11。

结果表明,具体到不同技术的效果,人工智能在这一领域仍有很多学习的空间。AlphaGo Master使用了很多与AlphaGo Zero相同的开发技术,但它需要首先利用人类的数据进行训练,随后才切换成自我对弈。

值得注意的是,虽然AlphaGo Zero在几周的训练期间学会了一些关键概念,但该系统学习的方法与人类有所不同。另外,AlphaGo Zero也比前几代系统更加节能,AlphaGo Lee需要使用几台机器和48个谷歌TPU机器学习加速芯片。其上一代AlphaGo Fan则要用到176个GPU芯片。AlphaGo Zero只需要使用一台配有4个TPU的机器即可。

创业咨询:0771-3219577
园区官方网络管理系统
扫一扫,资讯早知道!